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An analysis is made of the Stokes flow between parallel planes due to a three- 
dimensional rotlet whose axis is parallel to the boundary planes. The separation in 
the plane of symmetry of this flow is compared with that in its two-dimensional 
analogue, the Stokes flow between parallel planes due to a two-dimensional rotlet. I t  
is found that when the rotlets are midway between the planar walls, both flows 
exhibit an infinite set of Moffatt eddies. However, when the rotlets are not -ridway 
between the walls, the two-dimensional flow has an infinite set of Moffatt eddies, 
while the three-dimensional flow has at most a finite number of eddies and behaves, 
far from the rotlet, like the flow due to a two-dimensional source-sink doublet in each 
of the planes parallel to the boundary planes. An eigenfunction expansion describing 
a class of asymmetric Stokes flows between parallel planes is also derived and used 
to show that the far-field behaviour of flows in this class generally resembles the 
aforementioned flow due to a two-dimensional source-sink doublet in the planes 
parallel to the walls. 

1. Introduction 
In recent years, a number of studies have been made of Stokes flows in which flow 

separation and eddies may occur. In several of these studies, flows between parallel 
planar boundaries have been considered. For example, Moffatt ( 1964) considered an 
eigenfunction expansion for two-dimensional Stokes flow between parallel planes 
driven by an arbitrary disturbance and thereby discovered that such flows exhibit an 
infinite set of eddies. Liron & Mochon (1976) investigated the Stokes flow between 
parallel planes induced by a three-dimensional Stokeslet of arbitrary orientation. For 
the axisymmetric case in which the Stokeslet is normal to the planar walls, their 
analysis reveals (though it apparently was not noticed) that the flow contains an 
infinite set of eddies very similar to those of Moffatt; however, for the asymmetric 
case in which the Stokeslet is parallel to the walls, it was found that the flow far from 
the Stokeslet resembles that due to a two-dimensional source-sink doublet in each of 
the planes parallel to the walls. Another noteworthy example is that of Ganatos, 
Pfeffer & Weinbaum (1980) who used an analytical-numerical procedure to 
investigate the asymmetric Stokes flow between parallel planes induced by the 
translation or rotation of a sphere. Flow structure was only briefly examined in this 
study since a great deal of numerical work was required to accurately determine the 
velocity field; however, some flow separation was observed in the few cases 
considered. The flow examined in the present paper is essentially a special case of the 
flow due to a rotating sphere considered by Ganatos et al. 

Some other studies have found the separation in a particular two-dimensional 
Stokes flow to be qualitatively the same as that in a plane of symmetry of the 
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FIQURE 1. Geometry of the asymmetric flow. The direction of the torque induced by the rotlet 
is indicated by the solid arrow. 

analogous three-dimensional flow. For example, Dorrepaal (1978, 1979) dem- 
onstrated the striking similarity between the separation in a two-dimensional 
streaming flow past a circular arc and that in a plane of symmetry of the three- 
dimensional (both axisymmetric and non-axisymmetric) streaming flow past a 
spherical cap. Another example is provided by Hackborn, O’Neill & Ranger (1986) 
who studied the Stokes flow inside a sphere due to a three-dimensional rotlet whose 
axis is perpendicular to a radius of the sphere ; it was found that the separation in the 
plane of symmetry of this flow is qualitatively the same as that in the Stokes flow 
inside a circular cylinder due to a two-dimensional rotlet. 

In this article, an analysis will be made of the asymmetric Stokes flow between 
parallel planes due to a three-dimensional rotlet whose axis is parallel to the 
boundary planes. The remarkable feature of this flow is the fact that the separation 
in its plane of symmetry generally differs radically from the separation in its two- 
dimensional analogue, the Stokes flow between parallel planes due to a two- 
dimensional rotlet. In particular, the two-dimensional flow always has an infinite set 
of Moffatt eddies ; however, if the rotlet is not midway between the boundary planes, 
there is at most a finite number of eddies in the plane of symmetry of the three- 
dimensional flow, and the far-field behaviour of this flow, like that of the 
aforementioned asymmetric flow considered by Liron & Mochon, resembles the flow 
due to a two-dimensional source-sink doublet in the planes parallel to the boundaries. 

The problem to be solved in determining the required asymmetric Stokes flow is 
stated in $2 and solved in $3. In $4) an asymptotic approximation to the flow far 
from the rotlet is found. The results of $03 and 4 are used in $5 to describe some of 
the physical characteristics of the flow. In $6) the analogous two-dimensional flow is 
determined and compared to its three-dimensional analogue. Finally, an eigen- 
function expansion for a class of asymmetric Stokes flows between parallel planes 
(similar to Moffatt’s 1964 eigenfunction expansion for two-dimensional Stokes flows) 
is determined in $7 and used to draw some general conclusions about flows within 
that class. 

2. Statement of the problem 
The flow to be considered occurs between rigid parallel planes separated by a 

distance 2h. The region between these planes is occupied by a homogeneous 
incompressible fluid of viscosity p, and the motion of this fluid is generated by a 
three-dimensional rotlet (or point rotlet) of strength u whose axis is parallel to the 
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boundary planes. By definition, a point rotlet is a singularity which exerts a torque 
of magnitude 8nap on the surrounding fluid, and the axis of the rotlet coincides with 
the direction of this torque. (A point rotlet can be regarded as a rotating sphere of 
infinitesimal radius.) 

Assume that (2, y, z )  are Cartesian coordinates considered to be dimensionless 
relative to h. Consequently, we may take the boundary planes to coincide with the 
planes z = - 1 and x = 1. Furthermore, it is supposed that the rotlet lies at the point 
( c ,  O , O ) ,  where - 1 < c c 1, and that the torque induced by the rotlet is in the positive 
z-direction. The geometry of the flow is shown in figure 1. Note that the plane z = 0 
is a plane of symmetry for the flow, and the plane y = 0 is a plane of antisymmetry. 

Taking the fluid velocity q to be dimensionless relative to a /h2 ,  the presence of the 
rotlet can be expressed by 

4 = 40+41, 
where qo, the velocity singularity representing the rotlet, is 

(2.1) 

with R = ( x - c )  i + g f + z k ,  and q1 represents a Stokes flow with no singularities in the 
flow region - 1 < x < 1. Assuming that the Reynolds number for the flow is zero, the 
flow is governed by the Stokes equation and the continuity equation, given 

(2-3) 
respectively by 

where p is the dimensionless pressure relative to pa /h3 .  Since the flow is not 
axisymmetric, it cannot be represented by only one scalar function. However, 
introducing cylindrical coordinates (5, p, #) where y = p cos 4, z = p sin 9, p 2 0, and 
0 < g5 c 27c, an appropriate representation for the solution to (2.3) using just two 
scalar functions is (from Ranger 1978) 

v p  = V q ,  divq = 0, 

q = curl [ curl ('icos 4) +$ isin $1, 
i a  
P ax 

p = -- (L-,+) cos $4 

where + and x are scalar functions of x and p satisfying 

and the operator L-, is defined by 

L?, $ = L-, x = 0, 

This flow representation is suitable when the boundaries consist of one or more finite 
or infinite coaxial circular discs. 

From (2.4), the components of q in the directions of x, p and g5 are respectively 



534 W. W. Hackborn 

Using equations (2.7)-(2.9), the no-slip boundary condition on the planes x= - 1 and 
x = 1 may be expressed by 

- ;ti;) -- = 0, z = +1, (2.10) 

(2.11) 

(2.12) 

More useful boundary conditions can be obtained from (2.11) and (2.12) by 
eliminating either x or ay%/ax. Carrying this out yields 

Finally, it must also be required that 

q + O  as p - t m .  

(2.13) 

(2.14) 

(2.15) 

3. Solution of the problem 

are found to  be 
From (2.2), the components of the velocity field qo in the directions of z, p and q5 

qoz = -~R-~cosq5, pop = (~-c)R-~cos$ ,  po, = - ( z -~ )R-~s in$ ,  (3.1) 

respectively, where R = [ ( z - ~ ) ~ + p ~ ] ~ .  Now, let Po and xo be the scalar functions 
corresponding to q,, in accordance with (2.4). From (2.7)-(2.9) and the components 
of qo in (3.1), solutions for $o and xo are found to be 

Representations for $ and x that satisfy (2.1) and (2.6) are 
lcr0 = -[(z-c)"p2]+, xo = -(x-c)[(z-c)2+p2]-t (3.2) 

$ = $ o + p ( z > k ) P 4 ( k P ) d k ,  0 x = xo+~o~c(.,k)PJ,(kP)dk, (3.3) 

where J1 is the Bessel function of the first kind of order 1, and 

F ( z ,  k) = A, cosh (kz) +A, sinh (kz) + A ,  x cosh (kz) +A,  2 sinh (kz), (3.4) 

(3.5) G(x ,  k) = B, cosh (kx) +B2 sinh (kz), 
where A,, A,, A,, A,, B, and B, are functions of k. 

Using (3.2), (3.3) and derivatives of Bessel functions given in Gradshteyn & 
Ryzhik (1965), boundary conditions (2.10), (2.13) and (2.14) may be expressed by 

JOm k*F( f 1, k) J,(kp) dk = p[(c T 1)2+p2]-g, 

(3.7) 
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where Fx is the partial derivative of F with respect to x. Using the Hankel inversion 
theorem, (3.6)-(3.8) become 

kF( k 1, k) = p2[(c T 1)2+p2]-iJl(kp)dp, lam (3.9) 

Wx(kl,k) = k G ( f 1 , k )  = 3(c T l ) /o~p2[(c  T l)2+p2]-tJl(kp)dp. (3.10) 

The integrals above can be evaluated using integration by parts and integrals 
provided in Gradshteyn & Ryzhik (1965), giving 

(3.11) 

The six unknowns in (3.4) and (3.5) can now be determined from the six equations 
provided in (3.11). Hence, 

kF( k 1, k) = e-&(lTC), Fz( f 1, k) = G( f 1, k) = T e-*(lTC). 

[k-l(2k+ 1 -e-2”) cosh (kx) -2xsinh (kz)] cosh (kc)  
sinh (2k) + 2k F(z ,  k) = 

[k-l(2k+ 1 +e-2k)sinh (kx)-2xcosh (kx)]sinh(kc) 
sinh ( 2 4  - 2k , (3.12) + 

-e-’sinh (kc) cosh (kz) e-& cosh (kc) sinh (kz) 
G(x,  k) = - (3.13) 

cosh k sinh k 

The required solutions for $ and x are now completely specified by (3.2), (3.3), (3.12) 
and (3.13). 

Substituting these solutions for $ and x into (2.7)-(2.9), the velocity components 
are found to be 

(3.14) 
where 

qx = qx cos A qp = !&, cos $, q4 = g4 sin #, 

(3.15) 

4. Asymptotic analysis 
Although the expressions given above for the velocity components may be used to 

compute the streamlines of the flow, the best way to study the overall flow structure 
qualitatively is to use asymptotic approximations to the velocity components far 
from the rotlet. In  order fo derive these approximations, we shall first find series 
expansions for $ and x .  
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n A n  Pn 
1 4.212392+2.2507293 7.497 676+ 2.768678i 
2 10.71254+3.103 149i 13.899 96 + 3.352 21 Oi 
3 17.073 36 + 3.551 087i 20.23852 + 3.71676% 

TABLE 1. The first three values of An and p,, computed from (4.7) and (4.8) 

From (3.2), (3.3) and integrals given in Gradshteyn & Ryzhik (1965), we obtain, 
for p > 0, 

e = - lz - cl + (am H (  k )  pJl( k p )  dk, 

where H ( k )  = F ( z ,  k )  - k-l e-klz-cl, and 

x = -sgn(s-c)+ 

1, x 2 c  
-1 ,  z < c '  

where I(  k) = G( z, k )  + sgn (2 - c) e-kls-cl and sgn(z-c) = 

Using (3.12), we find 

H ( k )  = 
[cosh (kz)-cosh [k(z -29) ] -2k(z -8)  sinh (kz)] cosh (kc) 

k (sinh (2k) +2k) 

[sinh (kz)+sinh[k(z-2s)]-2k(z-s) cosh (kz)] sinh ( k c )  
k (sinh (2k) - 2k) 1 (4.3) + 

where s = sgn (z-c). Now, (4.1), (4.3) and integration by parts give 

@ = - +( cs8 + z2 - ~ C Z  + 1) + (4.4) 

Using the identity 

(t2-l)-fsin(ut)dt, u > 0, (4.5) 

from Gradshteyn & Ryzhik (1965), the integral in (4.4) may be written, for p > 0, as 

Regarding k as a complex variable, it can be seen from (4.3) that all singularities - 
of H ( k )  in the half-plane Im (k) > 0 are simple poles occurring at k = $I,, iiA,, iip,,, 
iip,,, for n = 1,2, . . . ,where A, and p, are the values in the first quadrant satisfying 

sinh,+A, = 0, sinp,-p,, = 0, (4.7) 
and are ordered by increasing real part. Asymptotic approximations for A, and p,, 
from Buchwald (1964), are 

A, - a,, + i log 2a,, pn - p, + i log Zp,, (4.8) 
where a, = i ( 4 n - 1 ) ~  and /3, = 34n+ 1 ) ~ .  The first three values of A, and p,, 
computed using Newton iteration to seven significant digits, are given in table 1. 
Now, it can be shown that the integral of H ( k )  eik@ over the semicircle at  infinity in 
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FIGURE 2. Streamlines of the far-field flow for c + 0 in a plane x = constant. The flow directions 
shown are those for c > 0. 

the half-plane Im (k) > 0 vanishes when pt > 0; furthermore, the singularities of 
H'(k) eik@ and H ( k )  coincide. Thus, the integral of H'(k) eik@ in (4.6) can be expressed 
in terms of its residues at  k = +iAn, ii&, +i,un, &!in, for n = 1,2, .  . . ; carrying this out 
and using the identity 

t(t2-l)-ie-Qtdt = K,(a), Re (a) > 0, J: (4.9) 

from Gradshteyn & Ryzhik (1965), where K ,  denotes the principal value of the 
modified Bessel function of the second kind of order 1, produces a series expansion 
for the integral on the left-hand side of (4.6). Combining this expansion with (4.4) 
gives 

m 

@ = -3c2?+x2-3cx+ 1)-4Re [ L n ( s ) p K , ( ~ A ; \ , p ) + M , ( x ) p K , ( ~ c l , p ) ] ,  (4.10) 
n=i ' 

for p > 0, where 

[x sin (#,, 5) -tan ($A,) cos ($An z)] cos (:A;\, c )  
cos An + 1 Ln(x) = , 

[z cos (&n 5) - cot (&urn) sin (&un x)] sin (bn c) 
cos,un- 1 Mn(x) = 

(4.11) 

(4.12) 

If the steps that were applied to (4.1) to produce (4.10) are now applied to (4.2), 
we obtain, for p > 0, 

m 
x = -x+2 C [s in( (n-+)m)cos( (n-$)m)pK, ( (n-$)xp)  

n-1 

- cos (nm)  sin (nxz) pK,(nxp)]. (4.13) 

Equations (2.7)-(2.9) and the expansions for @ and x given in (4.10) and (4.13) can 
now be used to find expansions for the velocity components. For our purposes, it is 
sufficient to determine only the leading terms in these expansions. The asymptotic 
relation 

K,(u) - (~-e-*~~+~~u-1~~ as u+w, (4.14) 

given in Gradshteyn & Ryzhik (1965), is used in the derivation of these terms. 
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C 0 0.001 0.01 0.1 0.25 0.5 0.75 

p coords. of sep. pts. 1.017 1.018 1.027 1.126 q5 q5 0.7590 
on 2 = - 1, $ = 0 3.970 3.880 3.489 2.510 - - - 

- - - - - 6.777 - 
- - - - - __ etc. 

p coords. of sep. pts. 1.017 1.016 1.007 0.9185 0.7698 0.5098 0.2511 
o n s = l , c $ = O  3.970 4.105 - - - - - 

6.777 5.140 - - - - - 

- - - - - - etc. 

TABLE 2. The p-coordinates of separation points on s = f 1, q5 = 0 computed for several 
values of G 

Surprisingly, the leading terms differ depending on whether or not c = 0. When 
c 9 0, it  is found that 

qx - O(p-te-fRe(Ai)p 1 as P + W ,  (4.15) 
qp - $(x2 - 1) p-2 cos + + O(p-e e+p) (4.16) 
q9 - tc(x2 - 1) p-2 sin q5 + O(p+ e+p) (4.17) 

On the other hand, many terms in the expansions for the velocity components, 
including the leading terms in (4.16) and (4.17), vanish when c = 0. Consequently, in 
this case, 

qx - Re [ A ( z  sin (& x) - tan (&IA,) cos ($Al x)) p-; e-iA1p (1 + O(p-l))] cos q5 

as p -+ co , 
as p -+ co . 

+O(p-;e-iRe(’2)p) as p+ 00, (4.18) 

+O(p-tePnp) as p- fco ,  (4.19) 

qp - Re [ A ( z  COB ($Al z) - cot ($Al) sin ($Al z)) p-ie-iAip (1 + O(p-l))] cos 4 

q9 - Re - (x cos (+Al z) - cot ($A,) sin ( iAl  x))p-te-iA1p (1 + O(p-’))] sin 4 [Y 
+O(p-:e-”) as p+m,  (4.20) 

where A = &A!/( 1 + cos Al). 

5. Flow description 
For convenience, the components of the far-field velocity obtained by ignoring the 

O ( .  . .) terms in either (4.15)-(4.17), if c =!= 0, or (4.18)-(4.20), if c = 0, will be denoted 
by q:, q; and q;, and the corresponding flow will be termed the far-field flow. We shall 
begin by examining the far-field flow. 

First, the case c 8 0 will be considered. Since q,* = 0 in this case, the streamlines 
of the far-field flow lie in the planes z = constant, for - 1 < z < 1 ; hence, the far-field 
&rw is two-dimensional in this sense. Now, consider the function 

Since q: = -p-l aI‘/aq5 and q* - W/Clp, it follows that r is a stream function for the 
two-dimensional flow occurring in a plane x = constant. In fact, rrepresents the flow 
in an unbounded fluid due to a two-dimensional source-aink doublet of strength 
$c( 1 - x2), located a t  p = 0 and oriented parallel to the y-axis. Hence, the streamlines 
of the far-field flow (i.e. the curves on which r and x are constant) are evidently 
circles in the planes x = constant, and are tangent to the plane z = 0 at y = 0. (The 

r = &(l -xa)p-’sin q5. (5.1) 

$1 
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FIQURE 3. Schematic diagrams of streamlines in the plane z = 0 for (a) c = 0,  (b)  0.001, (c) 0.1, 
(d) 0.25, (e) 0.5, and (f) 0.75. The position of the rotlet is indicated by + . 
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streamlines on which z = 0, x = constant are regarded as circles of infinite radius.) 
Streamlines of the far-field flow for c =+ 0 in a plane x = constant are shown in figure 
2. Although the actual streamlines for c =+ 0 will differ somewhat from those depicted 
in figure 2, especially near the line p = 0, there are clearly closed streamlines 
comprising a large-scale recirculation on each side of the plane of symmetry z = 0 in 
the actual flow. 

For the ca8e c = O ,  the far-field velocity components qz, q: and $, given in 
(4.18)-(4.20), have the factor exp (-$Alp). This indicates that the far-field flow 
consists of an infinite sequence of ‘cells ’ of length (in the p-direction) 2z/Im (A,) w 
2.792 ; the flow at corresponding points in adjacent cells (i.e. at points with the same 
x- and $-coordinates but differing by 2z/Im (A,) in the p-coordinate) differs in speed 
by a factor of about exp[nRe (Al)/(Im (A,) ]  w 358 and is roughly in opposite 
directions. 

The actual flow in the plane of symmetry z = 0 (or the azimuthal planes 4 = 0, 
q5 = n) will now be examined. When c + 0, the far-field flow determined above implies 
that streamlines in the plane z = 0 where p is sufficiently large are approximately 
straight lines on which x is constant; hence, eddies in the plane of symmetry z = 0 
can exist only where p is sufficiently small. In contrast, when c = 0, the 
aforementioned sequence of cells in the far-field flow imply the existence of an infinite 
sequence of eddies in the plane z = 0 where p is sufficiently large. 

The flow direction near a boundary is indicated by the vorticity (or, equivalently, 
the tangential stress) on that bou9dary. On the walls x = +_ 1 in the azimuthal plane 
4 = 0, the vorticity curl q = w#, where w = agp/ax. Flow separation points on 
x = f 1, 4 = 0 occur at  p-values at  which w changes sign. The p-coordinates of 
separation points on x = f 1, 4 = 0 have been computed for several values of c using 
the expression for w obtained by differentiating (3.16). These are provided, correct to 
four significant digits, in table 2. Note that separation points also occur on x = f 1, 
4 = n: at the p-coordinates given in table 2. 

Using the far-field flow and the boundary vorticity, schematic diagrams of 
streamlines in the plane of symmetry z = 0 can be drawn. Diagrams of this kind are 
given in figure 3 for various values of c.  When c = 0, the flow exhibits an infinite 
sequence of eddies on each side of a ‘ separation region ’ (not considered to be an eddy) 
containing the rotlet, as depicted in figure 3(a).  For small positive values of c, the 
flow in the plane z = 0 exhibits a finite number of eddies (in addition to the 
separation region containing the rotlet) attached alternately to the boundary planes 
x = - 1 and x = 1. The remaining component of the flow in these cases consists of 
open streamlines which follow a circuitous path between the eddies. Figure 3(6) 
depicts a typical example of this kind of flow. As c increases from a small positive 
value, the number of eddies in the flow decreases rapidly until there are only two 
eddies (figure 3 c )  and eventually no eddies (figure 3 d ,  e ) .  As c continues to increase, 
a new eddy begins to grow on the wall x = - 1 at y = 0 when c x 0.65, and this eddy 
continues to exist for all greater values of c less than 1 (figure 3f). 

The flow in the plane of symmetry z = 0, as depicted in figure 3, contains some 
open streamlines when c =!= 0. These streamlines may suggest that there is a net 
volume flux between the boundary planes in the -y-direction when c + 0. This, of 
course, is not the case since the plane z = 0, having no thickness, can accommodate 
no volume flux; also, no net volume flux is associated with the flow in the region 
z 4 0 since this flow consists entirely of closed streamlines. 

It is worth noting that the flow behaviour shown in figure 3(d, e )  is qualitatively 
identical to that induced by the rotating sphere between parallel planes depicted in 
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Ganatos et al. (1980). The flow description above is also partially confirmed by Blake 
& Chwang’s (1974) solution for the flow beside a planar wall due to a point rotlet 
whose axis is parallel to the wall. Although Blake & Chwang did not look for 
separation in this flow, their solution implies a separation region like that attached 
to the boundary x = 1 in figure 3 ( f ) .  Furthermore, the velocity decays at the same 
rate as that in the case c =k 0 of the present study; however, as noted by Blake & 
Chwang, the streamlines far from a rotlet beside a single wall are approximately 
straight radial lines, and, therefore, these streamlines are open and are associated 
with a net volume flux. 

6. Comparison with two-dimensional flow 
The two-dimensional analogue of the three-dimensional flow examined above will 

now be briefly investigated. As before, the flow to be considered occurs between rigid 
parallel planes separated by a distance 2h, and the fluid between these planes has 
viscosity p. The flow is driven by a two-dimensional rotlet (or line rotlet) of strength 
u. By definition, a line rotlet is a singularity which exerts a torque per unit length 
of magnitude 4aap on the surrounding fluid. (A line rotlet can be regarded as a 
rotating cylinder of infinitesimal radius.) 

We again assume that the boundary planes coincide with the planes x = - 1 and 
x = 1, where (x, y, z )  are dimensionless Cartesian coordinates relative to h. The line 
rotlet is taken to coincide with the line x = c, y = 0, where - 1 < c < 1. The flow is 
best represented using a stream function Y that is dimensionless relative to u. If u 
and v are the components of the fluid velocity (assumed to be dimensionless relative 
to u/h)  in the x- and y-directions respectively, then 

The presence of the line rotlet may be expressed by 

(6-2) 
where R, = [(x-c)*+ y2]i and @represents a Stokes flow with no singularities in the 
flow region - 1 < x < 1. The stream function for a Stokes flow is known to satisfy the 
biharmonic equation, 

where V: is the two-dimensional Laplacian operator. From (6.1), the no-slip 
boundary condition on x = k 1 is seen to be satisfied if 

Y = logR, + !@, 

v: !P= 0, (6.3) 

ap 
ax 

Y=-=o, x = f l .  

The solution of (6.2)-(6.4) for which u -+ 0 and v -+ 0 as lyl+ co is readily found to be 

2[tanh k cosh (kx) - z sinh (kz)] cosh (kc) 
sinh (2k) + 2k 

h(x, k) = 

2[coth k sinh (kx) -x cosh (kz)] sinh (kc)  
sinh (2k) -2k 

. (6.6) + 
18.2 



542 W. W.  Hackborn 

C 0 0.25 cl 0.4411 0.5 0.75 

y coords. of first two sep. pts. 1.024 0.8675 0 3.144 2.391 
o n s = - l  3.790 3.651 3.303 5.932 5.174 

y coords. of first two sep. pts. 1.024 0.9059 0.6814 0.5995 0.2674 
o n x =  1 3.790 3.648 3.297 3.137 2.374 

computed for several values of e 
TABLE 3. The y-coordinates of the first two separation points in the region y 2 0 on x = 1 

The first term in (6.5) is simply the stream function for the inviscid irrotational flow 
due to a line rotlet between parallel planes at  x = rt 1, and the second term is 
obtained using a Fourier transform. Details of the derivation of (6.5), (6.6) and other 
equations in this section are given in Hackborn (1987). 

By expanding the first term in (6.5) using the Maclaurin series for log (1 - 6)  and 
expanding the second term using residue theory, it can be shown that 

m 

Y = 27t Re I: [Ln(x) e-:Anlul +M,(x)  e-bnlul], (6.7) 
n-1 

for y =b 0, where L,(z) and M,(x) are defined in (4.11) and (4.12), and A, and pn 
satisfy (4.7) and (4.8). From (6.1) and (6.7), 

u - Re [rl"cos ($A, c )  (x sin (:Al x) -tan ($A,) COB (&I, x)) e-iA1lul] 

w - Re [rl"cos (;A, c) (x cos (;Al x) - cot ($Al) sin ($Il 2)) e-iAIIYI] 

+O(e-iRe(pl)lul) as Iyl+ 00, (6.8) 

+ O(e-tRe(pl)lul 1 as Iyl+00, (6.9) 
where d = xhl/(  1 + cos &). Henceforth, the components of the far-field velocity 
obtained by ignoring the O ( .  . .) terms in (6.8) and (6.9) will be denoted by u* and v*, 
and the corresponding flow will be called the far-field flow. Now, the leading term of 
the expansion for Y given in (6.7) vanishes when 

(6.10) 

where m takes integer values for which the right-hand side of (6.10) is positive when 
- 1 < z < 1. Hence, the far-field flow consists of an infinite set of eddies which are 
separated by the curves described by (6.10) in the (x,y)-plane (or any other cross- 
sectional plane). Clearly, each eddy of the far-field flow has a length (in the y- 
direction) of 2x/Im (A, )  w 2.792 ; moreover, owing to the presence of exp (-&lyl) in 
the expressions for u* and v*, the flow at corresponding points in adjacent eddies (i.e. 
at  points with the same x-coordinate but differing by 2z/(Im (A,)  in the y-coordinate) 
differs in speed by a factor of exp[nRe(A,)/Im (A,) ]  z 358 and is in opposite 
directions . 

The preceding discussion of the far-field flow shows that the actual flow in the 
(x, y)-plane possesses infinitely many Y = 0 streamlines which are approximated 
increasingly well by (6.10) as m-t co and which are the dividing streamlines of an 
infinite set of eddies. Flow separation points occur where the Y = 0 streamlines 
intersect the boundary planes x = & 1. These separation points can best be found by 
determining the y-values at  which the scalar vorticity Vl Y changes sign on x = & 1. 
The y-coordinates of the first two separation points in the region y 2 0 on x = 5 1 

2 
IYl = ~ 

Im (4 ) [Ll(S)l+ ( m - 3  a 
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FIQURE 4. Accurate (computer-generated) plots of streamlines in the two-dimensional flow for (a) 
c = 0, (a) c = c1 x 0.441 1, (c) c = 0.5, and (d) c = 0.75. The position of the rotlet is indicated by +. 

have been computed in this way and are provided, correct to four significant digits, 
in table 3 for several values of c. Note from table 3 that the y-coordinate of the first 
separation point on z = - 1 decreases quickly until it equals 0 when c = cl, where 
c1 x 0.4411. 

Some streamlines of the flow in the (z, y)-plane have been accurately plotted in 
figure 4 for several values of c .  It is noteworthy that the flow has an unstable 
stagnation point on y = 0 for c1 < c < cz, where c2 x 0.6700 ; this indicates that there 
is a ‘figure-eight’ pair of free eddies in the flow (as in figure 4c) for this range of c- 
values. It is also clear from figure 4 how quickly the flow converges to the far-field 
flow. 

We can now compare the two-dimensional flow considered in this section with flow 
in the plane of symmetry of the three-dimensional flow considered previously. When 
c = 0, these two flows are evidently very similar. In this case, both flows exhibit an 
infinite set of eddies of roughly the same size, and the flow velocity in these eddies 
decays with distance from the rotlet a t  about the same exponential rate. In fact, the 
streamline patterns within the far-field eddies of the two flows are identical. (This 
follows from the fact that &/$ and u*/w*, obtained from (4.18), (4.19), (6.8) and 
(6.9), have exactly the same form when q5 = 0 and c = 0 except for the constants A 
and 2.) On the other hand, when c =k 0, the two flows are radically different. In this 
case, for the three-dimensional flow, there is at most a finite number of eddies in the 
plane of symmetry and the velocity decays algebraically with distance from the 
rotlet; in contrast, for the two-dimensional flow, there continues to be infinitely 
many eddies and the velocity still decays exponentially. 
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It would appear that the large-scale recirculation in the three-dimensional flow 
when c += 0 (as depicted in figure 2) and the resulting open streamlines in the plane 
of symmetry cause the separation in this flow to differ so strikingly from that in its 
two-dimensional analogue. If a large-scale recirculation is precluded either by 
additional symmetry, as when c = 0, or by the boundary conditions, as in the 
asymmetric flow inside a sphere due to a point rotlet studied by Hackborn et al. 
(1986), then we expect the separation in the plane of symmetry of the three- 
dimensional flow to be similar to that in the analogous two-dimensional flow when 
recirculation is impossible. 

A conjecture as to why the three-dimensional flow exhibits, when c 4 0, a large- 
scale recirculation resembling the flow due to a two-dimensional source-sink doublet 
in the planes x = constant may be that the separation points act like two- 
dimensional +sources or sinks. In particular, the two separation points, one in the 
azimuthal plane q5 = 0 and the other in q5 = R occurring at the smallest value of p 
seem to behave like a source-sink doublet in the following sense : fluid near the planar 
wall on which these separation points are located is pulled towards one of these 
points from all directions parallel to the wall; then, as it  nears this point, the fluid 
is drawn away from the wall and eventually thrust back towards the wall near the 
other separation point from which it is pushed in all directions parallel to the wall. 
The combination of fluid being pulled towards one of these separation points while 
being pushed away from the other creates a source-aink doublet effect near the wall, 
and this effect possibly dominates the entire far-field flow since the velocity 
component normal to the walls is forced to decay exponentially. 

7. General flow between parallel planes 
Moffatt (1964) examined two-dimensional Stokes flow in a corner formed by two 

intersecting rigid planes. In the same paper, Moffatt briefly considered two- 
dimensional Stokes flow between parallel planes, which may be regarded aa the 
limiting case of flow in a corner formed by two intersecting planes as the angle of the 
corner approaches 0. Letting (x, y, z )  be dimensionless Cartesian coordinates as 
above, Moffatt showed that the dimensionless stream function Y for the flow 
between parallel planes at  x = f 1 induced by an unspecified two-dimensional 
disturbance centred at y = 0 is 

m 

Y = Re [A,@ sin (;An 2) -tan (:A,) cos (:An x)) e-iAnlgl 
n-1 

+B,(x cos (&, 2) -cot (h,) sin (b, 2)) e-hnlYI], (7.1) 
for y 4 0, where A ,  and B, are constants determined by the disturbance driving the 
flow, and A, and p,, satisfy (4.7) and (4.8). (The expansion for Y in (7.1) is only 
implicit in Moffatt (1964) ; only the leading term is actually considered. To derive 
(7.1), one assumes that Y can be written as a series of separable solutions of (6.3) 
satisfying (6.4) for which the corresponding fluid velocity --t 0 as Iyl+ m.) The 
expansion for Y given in (6.7), for the case in which the disturbance driving the flow 
is a line rotlet, is just a specific example of that given in (7.1), as one would expect. 
Moffatt was the first to discover that the leading term in (7.1) is associated with an 
infinite sequence of eddies on each side of the disturbance causing the flow. The 
eddies farthest from the rotlet in figure 4 are essentially ‘Moffatt eddies’. 

An analysis similar to that of Moffatt can also be done for a general asymmetric 
Stokes flow between rigid parallel planes for which the fluid velocity can be 
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represented by (2.4). Let (x, y, z )  be dimensionless Cartesian coordinates and (2, p,  4) 
be the corresponding cylindrical coordinates, as defined in $ 2 ;  assume further that + 
and x are the scalar functions describing (in accordance with (2.4)) the dimensionless 
velocity q of a flow between parallel planes at z = & 1 induced by an unspecified 
disturbance centred at  p = 0. It is readily seen that a separable solution for y? in (2.6) 
has the form 

for p > 0, where k is an eigenvalue to be determined and 

@ = Re If(z)PKl(~PP)I, 

f(x) = Axsin(kx)+Bxcos(ks)+Ccos(kz)+Dsin(kx), 

in which A, B, C and D are constants. Now, conditions (2.10) and (2.13) require that 
f(x) = f’(z) = 0 at  x f 1 .  By considering separately the cases of an even f(z) and an 
odd f(x), we find that this requirement is satisfied by a non-trivial f(z) if and only if 
sin (2k) +2k = 0. Owing to the asymptotic behaviour ofK,(kp), as given by (4.14), we 
also need Re (k) > 0 to satisfy (2.15). It follows from (4.7) that k = +An, ;A,,, &, or 
@,, for n = 1,2 ,  . . . , and the corresponding eigenfunctions are 

= Re [A,(z sin (:A, x) -tan (:A,) cos (&I, x)) pK,($AA,p)], 

+?) = Re [B,(z cos (&.urn x) - cot ($pa) sin (b, 2)) p K l ( b ,  p) ] .  

x = Re[g(4PKl(b)l ,  

(7.2) 

(7.3) 

A separable solution for x in (2.6) has the form 

for p > 0, where, as above, k is an eigenvalue to be determined and 

g(x) = C cos (kx) + D  sin (kz). 
Condition (2.14) requires that g(z) = 0 at z = & 1. This requirement allows a non- 
trivial g(z) if and only if cosk = 0 (for an even g(z)) or sink = 0 (for an odd g ( x ) ) .  
Hence, k = ( n - i ) x  or k = n n ,  for n = l , 2 ,  ...( since we need Re(k)>O), and the 
corresponding eigenfunctions are 

xP) = C, cos ( (n  - 8) xx) pKl( (n - t )  zp), 

x?) = D, sin ( n x x )  pKl (nxp) . 
(7.4) 

(7.5) 

It is not difficult to show that the only other separable solutions of (2.6) for which 
the corresponding velocity is non-trivial and that satisfy (2.10)-(2.15) are 

(7.6) p o )  = A o X 3 + B o ~ ~ + C 0 x + D 0 ,  x(0) = mo z + 3Ao + co 
for p > 0. Evidently, +(O) and x ( O )  are ‘coupled’ in the sense that their coefficients are 
related in order to satisfy (2.11) and (2.12). It is also noteworthy that the velocity 
corresponding to +(O) and x ( O )  is independent of B,, C,  and Do. 

Now, assuming that @ and x can be represented by series involving the separable 
solutions given in (7.2)-(7.6), we have 

y? = A ,  Z +B, xp + C, +Do + Re I: [&($sin (+Aa z) -tan (+A,) cos ($Aa z)) pK,(+A, p)  
m 

n-1 

+B,(scos (@,z)-cot (&,)sin ($a~))@1(&~,p)]j (7.7) 

x = % , ~ + ~ A o + C O  
W 

+ [C, cos ((n-8) xx) pK,( (n-i)  xp)  +D,  sin (nnx) pKl(nxp)], (7.8) 
n-1 
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for p > 0, where the constants A,, B,, C ,  and D, (n = 0, 1, 2, . . .) are determined by 
the disturbance driving the flow. The expansions for 9 and x given in (4.10) and 
(4.13), for the case in which the disturbance is a point rotlet, are, of course, specific 
examples of those given in (7.7) and (7.8). 

The result found above has considerable predictive value. To illustrate, consider a 
particular Stokes flow between parallel planes x = k 1 and for which the fluid 
velocity can be represented by (2.4). Without doing any calculations, we can assume 
that the functions 9 and x describing this flow have the forms given in (7.7) and (7.8). 
Furthermore, provided that A, P 0, we can conclude that the velocity components 
for the flow are given by (4.15)-(4.17) (with c = -2A,) and that the far-field flow is 
identical to the flow induced by a two-dimensional source-sink doublet (as depicted 
in figure 2) in each of the planes x = constant. On the other hand, if the flow is 
antisymmetric about the plane x = 0 so that A, = B, = C ,  = 0 (n = 1,2, .  . .) then, 
provided that A, .t; 0, the velocity components are given by (4.18)-(4.20) (with 
A = -$hAfAl) and the far-field flow consists of an infinite sequence of cells. For 
example, if the disturbance driving the flow is a Stokeslet (point force) exerting a 
force Fj at the point (x, y, z )  = ( c ,  O , O ) ,  where - 1 < c < 1, then the velocity can be 
represented by (2.4), and, since the flow is not antisymmetric about the plane 
x = 0, we expect that A, + 0. In fact, A, = g(l -c2) for this flow, taking q to be 
dimensionless relative to Fl(87cph) ; this result was obtained from a study by Liron 
& Mochon (1976) of the Stokes flow between parallel planes due to a Stokeslet. As we 
would expect from the above remarks, Liron & Mochon found that, when the 
Stokeslet is parallel to the planar walls, the far-field flow is identical to the flow due 
to a two-dimensional source-sink doublet (with the same direction as the Stokeslet) 
in each of the planes parallel to the boundary planes. 
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